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The general dynamical problem for bubbles moving in an infinite expanse of perfect 
liquid is discussed from the standpoint of Hamiltonian theory, which is appreciated 
as a basis for linking symmetries with conservation laws and for identifying 
variational principles that describe steady motions. Allowance is made for surface 
tension and for an arbitrary gas law relating the pressure and volume of the bubble 
contents, but particular attention is paid to models where the volume is constant. 

In  $2, the most detailed part of the paper, a comprehensive theory is developed 
which represents the free surface parametrically and so applies globally in time. 
Conservation laws for energy and for linear and angular components of impulse are 
shown to follow simply from respective symmetries ; consequences of Galilean 
invariance and of a scaling symmetry are also explored. Finally in $2, variational 
characterizations of steady translational, spinning and spiralling motions are ex- 
plained. In $3 a formally simpler Hamiltonian theory is shown to derive from the 
mildly restrictive assumption that the free surface can be represented in an ortho- 
gonal coordinate system ; and some special details attending the use of cylindrical 
coordinates are noted. For bubbles steadily translating along an axis of sym- 
metry, approximate calculations supported by Rayleigh’s principle are presented 
in 94.1. Steadily spiralling motions are treated in $5 ; estimates based on spheroidal 
approximations to shape are presented in $5.1; and some speculations about stab- 
ility are discussed in $5.2. A brief account of generalizations dealing with multiply 
connected bubbles is given in $6. 

1. Introduction 
This paper adds to a series of investigations into Hamiltonian formulations of 

hydrodynamic free-boundary problems (Benjamin & Olver 1982 ; Olver 1983 ; Ben- 
jamin 1984, $6; Benjamin & Graham-Eagle 1985; Benjamin 1986~) .  The subject was 
initiated by Zakharov (1968) as a detail in a study of water waves, and other writers 
have contributed to it in the J o u m l  of Fluid Mechanics (e.g. Miles 1977; Milder 
1977). The particular aims here, as before, are to draw on Hamiltonian theory as, 
first, a frame for a systematic account of conservation laws in relation to symmetry 
properties and, second, a source of useful variational principles which describe steady 
motions and offer prospects of proving their stability (cf. Benjamin 1972, Appendix; 
1974, $2; 1976). Although having been treated otherwise in the past, the present 
problem is ripe for illumination in these two respects. 

The problem constitutes a fascinating exercise in idealized hydrodynamics. 
Another recommendation, long well recognized, is that ideal-fluid theory applies 
quite usefully to motions of bubbles subject to surface tension in liquids of small vis- 
cosity. Specifically, at  Reynolds numbers greater than about 200, the Weber number 

12-2 



350 T .  B. Benjamin 

comparing capillary and non-viscous hydrodynamic stresses becomes predominant 
as the parameter upon which stability and other observable properties depend. The 
incisive study by Saffman (1956) first made this point clear, and it was firmly endorsed 
by the experimental findings of Hartunian & Sears (1957), to which detailed reference 
will need to be made in $4. The relevance of ideal-fluid theory has been explored 
further by Moore (1965), El Sawi (1974), Miksis, Vanden-Broek & Keller (1981) and 
others. 

Two formulations will be presented, being considered complementary rather than 
alternative. The first, more fully developed in $2, allows for parametric representa- 
tions of the free surface. It provides a particularly neat correspondence between 
symmetries and the physically meaningful conservative properties of the system, also 
a very simple identification of the variational principles for steady motions. The 
second formulation, shown in $3 to derive from the first, applies only to non- 
parametric representations. It is superficially simpler, exemplifying Hamilton’s 
equations in canonical form, but is less lucid in exposing all the conservation laws. 

The material of $3 has affinity with a recent essay by Lewis et al. (1986) on the 
Hamiltonian structure of free-boundary problems. Their account, which extends to 
perfect-fluid motions with vorticity, in effect generalizes the original discovery by 
Zakharov (1968) and inquires deeply into geometrical aspects of the Hamiltonian 
formalism. Although the equations for a liquid drop in vucuo are taken as an 
example, which are of course closely related to those to be studied here, their 
account is considerably more abstract than the following. 

2. General theory 
For free motions of a gas-filled bubble in an infinite perfect liquid, a global 

quasi-Hamiltonian formulation of the evolutionary equations will first be noted. 
Hence we shall finally obtain a useful variational characterization of steady trans- 
lational and spiralling motions. The account closely follows the treatment by 
Benjamin & Olver (1982, Appendix 1) who dealt with parametric representations of 
the free surface in the water-wave problem. The assumptions of the model are listed 
as follows : 

(i) The liquid is inviscid and incompressible, with unit density, and in all directions 
extends to infinity where it is at rest. 

(ii) The time-dependent space d composing the bubble is simply connected; 
therefore so also is the liquid-filled space D = W\A. 

(iii) The gas contained in d has negligible inertia; so its pressure P is uniform and 
is supposed to bear a known relation to the volume Y of d. For present purposes 
there will be no need to specify a particular gas law, but the isothermal law 
W = const. can serve as an example. An important version of the model takes Y 
to be fixed. Then P, a function of time t alone, is calculable as a dynamical property. 

(iv) The motion has been started from rest by the application of conservative 
external forces. Consequently it has a velocity potential &x1, x2, x,, t ) ,  which because 
of (i) is a harmonic function of the Cartesian coordinates xl, xo, x3 in D and because 
of (ii) is single-valued. 

(v) No part of the bubble surface 8, the boundary of A ,  impacts another part during 
the motion. 

The closed surface S has infinitely many admissible parametric descriptions in the 
form 

xt = &(a, /3, t )  (i = 1,2,3), 
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FIGURE 1. Illustration of bubble whose time-dependent surface S is described by x = X(a,B,t) 
with (a,& ranging over fixed rectangle R. 

and for the time being there is no need to specify any particular description. Here 
the X, are taken to be periodic, twice differentiable functions of a and /3, which can 
accordingly be supposed to range over a fixed rectangle D (see figure 1). In terms 
Of  

Xa) Xl) a(x1, XZ) 
a(a,p) ) Ya = w , p )  Yi = q a , p )  9 Y z =  

and J = (y$ (summation convention), 

the components of the unit normal n to 8, directed into the liquid, are y,/J. (Note 
that Jz = EG- P in the standard notation of differential geometry.) In  general J is 
positive except at two points of D (poles on S), but the quotients y t /J  can be assumed 
to have determinate limits there. (Compare the case when A is a torus and J > 0 
everywhere.) 

r r The area of S is 
lSl=J d s = J  J d a d a ;  

S a 

and it is well known from differential geometry that the first variation of IS1 is given 
bv 

where H is the mean curvature of S (positive where S is curved inwards). Thus, 
defining variational derivatives in respect of the inner product for Le(D), we have 

The following notation will be helpful : 



352 

Note that 

T .  B. Benjamin 

and 6 = (q3)s+ @(() xt.  (2.3) 

The second identity shows how the first (infinitesimal) variation 6 of @ is derived 
from that of qi in D and that of X. 

2.1. The hydrodynamic problem 
The velocity potential qi is required to be a harmonic function D(t)+R vanishing 
together with IVqi( as IxI+oo. At each t ,  given D ( t )  and @, therefore qi is uniquely 
determined as the solution of a linear Dirichlet problem ; and so the normal velocity 

of the free surface S is implied as a functional transformation of @. 
The kinematic boundary condition a t  8 is 

ensuring that the normal velocity of the moving surface equals the normal velocity 
of the liquid. The dynamical boundary condition at S is expressible by the Bernoulli 
integral of the Euler equations for irrotational motion, thus 

@(, )+&2-2uH+P=o ,  (2.5) 
where u is the coefficient of surface tension and P is the uniform pressure inside the 
bubble relative to the pressure in the liquid at  infinity. Note that in (2.5) P-2uH 
is the pressure in the liquid at the bubble surface. 

To identify the generalized Hamiltonian structure of the system constituted by 
(2.4), (2.5) and the associated potential problem, we can proceed without particu- 
larizing the choice of parametric representation for S. One possible choice deserving 
mention, however, is to define a and /3 as Lagrangian coordinates that specify fluid 
particles lying in S. In this case we have aX,/at = @(*) for each i .  But for present 
purposes a Lagrangian description of S has little advantage. 

2.2. The energy functional 
The potential energy of the system is vl8I -jPd-tr, where P is known as a function 
of V alone from the prescribed gas law. The lower limit of the integral is of course 
arbitrary and immaterial. The kinetic energy K is expressed by 

2K = J IVqi12 dxl dx, dx3 = - 
D 

in which the second expression follows from the first according to Green's theorem 
and ds = Jdad$. 

The first variation of K is seen to be 

(Note that the reduction from the first to the second line by means of Green's theorem 
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depends on the assumption that the variation $ of g5 is small enough a t  large r = 1x1 
for there to be no contribution from the implicit surface integral at infinity. Contrary 
cases will need to be considered presently, however, in connection with the infini- 
tesimal generators of certain symmetry groups.) Hence, using (2.1) and (2 .3) ,  we 
conclude that the variational derivatives of the total energy E = K+ulh'l-~PdY 
are 

which will be considered collectively as a four-component column vector written 
grad mx,, xa", x3, @I. 

2.3. Harniltonian fomnulution 
The solution of the hydrodynamic problem can be represented as the vector-valued 
variable 

This representation is plainly legitimate since the X, and @ = $s fully determine the 
motion at each instant. Hence the hydrodynamic problem is seen to be expressed by 

(2-7)  M- = gradE(U), 

u= [X1,X2,X3,@IT= u(a,p,t)- 

au 
at 

where M is the skew-symmetric matrix defined as follows. In terms of 

%j = Yr @(j) - Yj @(t) = -%, 

0 a21  as1 Y1 

the definition is 

0 

-71 -?a" -Y3 

Confirmation of the equivalence between (2.7) and the nonlinear boundary 
conditions is straightforward (cf. Benjamin & Olver 1982, pp. 178-9). In view of (2 .6) ,  
the kinematic condition (2.4) is recovered by the fourth row of (2 .7) ,  and the first 
three rows are (with i = 1 ,2 ,3 )  

ax a@ 
-atj++y*- at = ( -@+2aH-P)y i+J@( , ,  qt). 

Multiplying by y i / P ,  summing over i and then substituting for J@(n) from (2.4) as 
already inferred from (2 .7) ,  we obtain 

which because of (2.2) is the same as (2.5). Conversely, given (2.4) and (2.5), 
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substitution for aX,/at and for a@/at as expressed by (2.2) verifies each row of (2.7) 
in the light of (2.6). 

It should be emphasized that the matrix M depends on U through the coefficients 
yr and a,,, also that det (M) = 0 so that M is not invertible in any elementary sense.? 
Thus (2.7) is only 'quasi-Hamiltonian' and in general irreducible globally in time to 
canonical Hamiltonian form, although the latter will be exemplified by the simpler 
but restricted theory to be presented in $3. There will be no need here to go into full 
mathematical details of the Hamiltonian structure. Equation (2.7) as it stands is 
nevertheless well suited to present aims. First, it frames the connection between 
symmetries of the physical system and otherwise easily confirmable conservative 
properties. Second and more important, it reveals the variational principles charac- 
terizing steady motions. 

The first aim is met by adapting a generalization of Noether's theorem that has 
been developed by Olver (1980, $5; 1983; cf. also Benjamin & Olver 1982, 95). The 
needed rule in abstract is stated as follows without proof, but i t  will be borne out 
in interesting fashion by the conservation laws to be discussed below. 

Let the four-component vector V represent the infinitesimal generator of a 
one-parameter symmetry group for (2.7), in the sense that if U(a, 8, t) is any solution 
U+eVis  also a solution to O(E).  Let the Hamiltonian E be unaffected to O(s) by the 
transformation represented by EV. Then a functional f found to satisfy 

M V =  gradf(U) (2.9) 

is independent of t  when evaluated on any solution of (2.7). 
A different conclusion holds in the case that a modified Hamiltonian, say &', 

depends explicitly on t or x and is thereby affected to O(s) by the transformation. 
Then the property implied by (2.9) is that 

(2.10) 

for any solution of (2.7). 
A more subtle elaboration is needed for Galilean transformations and one other, 

which are such that the first-order perturbation E$ of $ does not vanish in the 
limit 1x1 + co. The implication of (2.9) in such a case can be proved in abstract without 
too much difficulty, although with a necessary generalization of the meaning attached 
to gradK. Being more readily verifiable by a direct calculation for the specific 
symmetries in question, the implication is that 

(2.11) 

Here 9, denotes the sphere xt +xi +xi = r2. 

2.4. Invariants 
Energy 

Since neither E nor M depends explicitly on t, the most obvious symmetry group 
for (2.7) is that of translation along the t-axis, its infinitesimal representative being 

But at a deeper level it can be appreciated that M is invertible after the function class for 
U has been factorized by the group of all parametric representations. I am indebted to Professor 
J. E. Marsden for this observation. 
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V = -aU/at. So E is invariant according to the rule (2.9). The property of energy 
conservation is verified directly by consideration that 

z=J, (grad E) - U, da dp 

n 

because M is skew-symmetric. 

Impulse 
Invariants associable with spatial symmetries of the system, namely translations 

and rotations, can be anticipated to constitute components of Kelvin impulse (Lamb 
1932, $5120 and 121 ; Kochin, Kibel & Roze 1964, p. 397; Birlihoff 1950, chapter 5). 
But it will be of interest to see how they conform with the rule (2.9). The linear impulse 
of the motion is the vector 

I =  -Is@nds, (2.12a) 

whose components are 

(2.12b) 

and the corresponding impulsive couple is 

L = -Is @ ( X x  n)da, (2.13a) 

whose components are 

Lg = - @PX, yk da dp. (2.13b) 

It is not difficult to verify directly from (2.4) and (2.5) that I a n d  L are constant 
vectors. Alternatively, with reference to the rule (2.9), we note for example that 

PMII, = LO, a(@, x,), a(x2, a), -Y,IT, 

where a(. , .) is short for a(. , .)/a@, 8) and where the definition y1 = a(X2,  X,) and 
integrations by parts have been used to reduce jl. Since @ = #(X, ,X2,X, ,  t )  it follows 
that 

a(@, X,) = @(1) a(x1, X,) + @(2) a(%, X,) 

a(&, @) = a,a. 

= - @(l) Ye + @(a) Y l  = a129 

and similarly 

Thus pad I1 = [o, a12, -yllT 
= M[ 1 , 0, O,O]T 

in the light of (2.8). But V = [l, 0, 0, 0IT plainly generates the symmetry group of 
translations in the 2,-direction: the addition of any number E to Xl merely shifts 
the bubble by this distance in the 2,-direction and leaves the dynamical problem 
unchanged. In particular, E is unaffected by the transformation. According to (2.9), 
therefore, Il is a constant of the motion. The invariance of I2 and la is implied 
similarly. 
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As regards L, consider for example 

L, = - @(X2 y3- X, y,) da da, s, 
which is found to give 

gradL, = [a,,X,-a,,X,, - a Z 3 X 2 ,  y2X3-y3X21T 

= M[O, - X 3 ,  X,, 0IT. (2.14) 

Here V = [0,  - X,, X,, OIT represents the infinitesimal generator of the rotation group 
about the x,-axis. So the rule (2.9) confirms L, to be a constant of the motion. Similar 
conclusions apply to L, and L,. 

Volume changes 

@ without changing the problem. In this case we have V = [ O , O ,  0, 1IT and so 
Another obvious symmetry of (2.7) is that any number c can be added to q5 and 

M V =  [Y,,Y2,Y3,0lT = gradY. 

Since 4 = 1 ,  the formula (2.11) consequent upon (2.9) reproduces the simple 
kinematic identity 

where A, is the monopole coefficient of the far field (see (2.17) below). 

Dynamic-kinematic combinations 
The next property deserving attention relates to the Galilean invariance of the 

system (2.7). Let us first note the infinitesimal generator of the pertinent symmetry 
group. In respect of the x,-direction it is represented by 

v = [ t ,  0, 0 ,  XJT; (2.15) 

for if U is any solution with corresponding velocity potential q5(z1,x2,x3,t), the 
infinitesimal perturbation 

U + E [ t 7  O ,  O ,  #(xi-cEt, x2Y x3, t ,  +Ex] 

is evidently also a solution to O(c) .  The new solution just corresponds to the original 
motion observed in a frame of reference moving at constant velocity -c  in the x1 
direction. We find for the case (2.15) that 

M V  = t grad 1, + [Yl x,, y, x,, y3 x,, OIT 
= t grad I ,  + grad C,, 

where C, = X, dx, dx, dx, = 5, Y .  J', (2.16) 

Thus (2.9) is exemplified with f = t l ,  + C,. 
In the present case the result (2.11) is again operative, and we have 6 = x1 plus 

terms vanishing as r+m. In terms of spherical polar coordinates ( r ,6 ,$) ,  the 
asymptotic form of the original velocity potential is 

A 1  
r r2 

9 = A + - ( A ,  cosO+A, sin6 cos$+A,sin6 sin$)+O 
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where the monopole coefficient A, and dipole coefficients A, are functions oft  alone. 
The coordinates being chosen so that x, = r cos 8, only the dipole term with coefficient 
A, makes a non-zero contribution to the integral on the right side of (2.11). Since 
I, = const. it thus appears that 

I +- dC1- - - 4 4 .  (2.18) 

The same argument leads to corresponding results with subscripts 2 and 3 in place 
of 1. 

Although its connection with the Galilean symmetry group is of particular interest 
from the present standpoint, the result (2.18) is otherwise immediately deducible 
from Green’s theorem, the definition of I, and the obvious identity 

dt 

Note that (2.18) is independent of precise conditions at infinity, as are needed to make 
the total momentum of the fluid determinate and to account fully for the relation 
between gross dynamic properties and gross kinematic ones such as drift (cf. 
Benjamin 19863). 

For water waves in the case of infinite depth, the result corresponding to (2.18) 
was shown in Benjamin & Olver (1982, $6.5) to have a simple consequence because 
generally A, = 0. But the present problem admits no such simplification, and (2.18) 
is not comparably informative about the kinematics of bubble motions. It neverthe- 
less provides a mildly noteworthy sidelight on a proposition due to Saffman (1967), 
who showed that a deformable massless body can propel itself over any distance in 
an infinite perfect fluid. Over such a motion starting and ending at rest, the integral 
of Imust be zero, since no external force acts. So (2.17) indicates that the net change 
in C is wholly accountable to the deformations producing a non-zero average value 
of the dipole far field. 

Virial 
Another property worth attention concerns the scalar 

I. I. 

(2.19) 

which may be called the virial of the motion (cf. Benjamin & Olver 1982, $36.244) .  
The property relates to the scaling symmetry for (2.7), as represented by the fact that 
in the case dV/dt = 0 (see below) any given solution transforms into new solutions 

x* = Ax(a,p,A-?t), @* = Ai@(a,B,A-it), 

P p* = - 
A’ 

$6* = Ai$6(A-,x, A-it), 

where A is any positive number. Details of the relation are complicated, however, and 
little is missed by ignoring them. By Green’s theorem the definition (2.19) is 
equivalent to 

I. I. 

W =  ( ~ - V $ + 3 $ ) d z ~ d x ~ d x ~ - J  $ ( x * n )  ds. 
JLI m 
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Here as before the normal vector n is outward on the surface at infinity. Hence a 
straightforward calculation shows that 

-- d W -  5K-2alSI+3P"lr. (2.20) 
dt 

(No contribution is made by an integral at  infinity because q5t+p = 0(1/?p) there.) 
Note that this result is consistent with a state of rest; for then K = 0, Y = @a8, 
181 = 4nae and P = 2u/a. 

An interesting implication of (2.20) concerns infinitesimal shape oscillations of a 
bubble that are superposed on its spherical form at rest (cf. Lamb 1932, $275). 
Changes of pressure in the contained gas are of second-order smallness; and, as is well 
known, the mean kinetic energy a of such simple-harmonic motions equals their 
mean potential energy. Hence, taking as the model that Y is fixed, one deduces from 
(2.20) that owing to the oscillations the mean pressure inside the bubble changes by 

- 2a K 
p-- = -- < 0. 

a Y 

an amount 
(2.21) 

On the alternative supposition that P is related to by the adiabatic law PV' = 
const. with y 3 1, allowance has to be made for changes in mean radius which 
affect both the second and third terms on the right of (2.20). A simple calculation 
leads to 

(2.22) 
- 2~ {37/(3y-l)}E p-- = - - 

a Y 

As might be expected, the previous result is recovered in the limit y --f 00. In  the case 
y = 1,  which corresponds to an isothermal gas law, the numerical factor on the right 
of (2.22) is t and the reduction in pressure is then the largest possible. 

2.5. The ca~e of $xed volume 
An expedient theoretical model is provided by specifying that Y = const. The model 
has been studied previously by Moore (1965), El Sawi (1974) and others, and it is 
justified as a good approximation when, as is usual, hydrodynamic and capillary 
pressures are much smaller than those needed to produce significant changes in the 
volume of gas contained by a bubble. 

Two more or less equivalent ways of treating it by Hamiltonian theory may be 
appreciated. In  either, E, = K +  Q 181. First, the Hamiltonian is taken to be E, but 
the configuration space for X is specifically delimited by the volume constraint, so 
that the operation grad has to be interpreted accordingly. Thus, grad28 in (2.7) is 
replaced by grad E, - P grad Y ,  where P is the scalar Lagrange multiplier depending 
on t alone. In effect the modification realigns the vector grad E, to lie in the narrowed 
configuration space. The arguments underlying the relevant version of Noether's 
theorem need a corresponding adjustment, but the outcome is of course much the 
same as already summarized. 

Alternatively, the Hamiltonian is taken to be &' = E,-PY and the theory 
proceeds as before; in particular &' replaces E in (2.7). Since &' is explicitly 
t-dependent through P, the formula (2.10) referred to the modified version of (2.7) 
gives 

dP - -Y-, 
dt dt 

d&' -- 

which confirms that E, = const. 
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2.6. Steady translational motions 
Suppose the movement of the bubble to be a uniform translation in the 2,-direction. 
Then aX/at = [c,O,O].  Since @ too is reckoned as a function of cc, t9 and t ,  we also 
have M / a t  = 0 in this case. Thus, when account is still taken of potential energy due 
to the gas contents, (2.7) reduces to 

grad E = M[c, 0, 0, OIT = c grad I,. 

But obviously V = const. during the steady motion, and so the formulation 
explained in the preceding paragraph becomes more helpful. We thus arrive at  

gradS=gradE,-PgradV=cgradI,,  (2.23) 

in which E,, = K+ alSI. Conversely, i t  is easy to verify that the system of equations 
(2.23) is only satisfied by a solution Urepresenting a steady motion. Needless to say, 
a corresponding system of equations applies to steady motions in any other direction. 

The system (2.23) constitutes the EulepLagrange necessary condition for extremal 
values of E, corresponding to given values of V and I,. The internal pressure P and 
velocity c of the bubble are thus presented as Lagrange multipliers. The variational 
principle mainly in view, which will be considered further at the end of $3, can be 
stated as follows. Given an I ,  (not too large; see below), the motion realizing the 
minimum of E, is a steady translation. In application of the principle, competitors 
for the minimum can be delimited to motions symmetric about the xl-axis, and when 
I ,  is not too large it can be expected moreover that the absolute minimum will be 
realized in the class of axisymmetric motions. But there is evidence that this 
attribution is not always valid (see $ 5.2). The present variational characterization 
is the counterpart of known results for steady water waves (Benjamin 1972, 
Appendix; 1974, $2). 

Since according to the constant-volume model E,, I, and V are all constants of 
any free motion, the characterization of a steady motion as conditional minimizer 
of E, carries an implication of stability. Specifically, the non-negative invariant 
E, - min E, may serve as a Lyapunov function on which to base a proof of stability. 
In  the definition of a useful metric, translations of the bubble would have to be 
factored out somehow, and a proof of stability in respect of shape would also be quite 
complicated otherwise (cf. Benjamin 1972). But the minimizing property is at least 
a persuasive pointer to the likelihood of stability. 

The qualification that I, should not be too large for a given Y is necessary because 
of the basic assumption that d is simply connected. A large impulse can be realized 
by the motion of a bubble with small Y only if the bubble becomes toroidal. This 
point has been discussed fully by Benjamin & Ellis (1967). Extensions of the theory 
dealing with multiply connected bubbles will be outlined in $ 5. 

2.7. Steady spinning or spiralling motions 
This general class of bubble motions will now be shown to admit a comprehensive 
variational characterization, identified here for the first time. Suppose that a bubble 
maintains its shape while translating with constant velocity c in the 2,-direction and 
also rotating with constant angular velocity w about the 2,-axis. Two possibilities 
are in view: either the centroid of the bubble remains on the xl-axis, in which case 
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the bubble is said to have a spinning motion, or the centroid moves in a helical path 
around the s,-axis and so the bubble has a spiralling motion. In either case we have 

and in the present formulation a@/at = 0 (i.e. the evaluation @ of 9 at the bubble 
surface evidently translates and rotates in step with the shape, therefore depending 
only on a and p). Hence, in the light of our finding (2.14) about L, in relation to the 
rotation group, the equations of motion are seen to reduce in this case to 

gradE,-PgradY = cgradI,+w gradL,. (2.24) 

This system of equations constitutes the Euler-Lagrange necessary conditions for 
extremal values of Eo corresponding to given values of Y ,  I ,  and L,. In other words, 
when the volume Y of the bubble and the impulsive wrench composed of I ,  and L, 
are prescribed, a shape realizing a stationary value of total energy determines a 
bubble that performs a steady spinning or spiralling motion. Since E,, 1, and L, are 
all constants of any free motion, a conditional minimum of E,  again indicates the 
likelihood of the steady motion so characterized being stable in respect of bubble 
shape. 

For steady spinning motions a different but equivalent formulation will be noted 
in $3.1. The simplest case arises when I, = 0 and E, is minimized for given Y and 
L, + 0. Then the bubble rotates about the z,-axis without translating. Analysis is 
particularly easy when L, is infinitesimal, specifically O(s2) if s is the amplitude of 
the perturbation from spherical form suffered by the spinning bubble. The outcome 
of the present theory can then be anticipated from well-known results, and details 
of the confirmatory derivation from (2.24) can be passed over here. Considering 
vibrations of a nearly spherical bubble of mean radius a ,  Lamb (1932, p. 475) showed 
in general that their frequency w is given by 

w2 = (n- l ) (n+l ) (n+2)- ,  
Pa3 

(2.25) 

where n is the order of the spherical harmonic (8, in Lamb’s notation) describing 
the radial displacements of the bubble surface. (Note that dependence on the density 
p of the surrounding liquid, hitherto taken as 1 for convenience, is suitably made 
explicit in the preceding formula.) For the present application we need sectoral 
harmonics of order n 2 2. Thus, in terms of spherical coordinates ( r ,  8, $), the surface 
of the bubble is described by 

r = a + s e  (cos8)cosn($-wwt). 

It may readily be confirmed that the minimum of E, for given L, + 0 is realized with 
n = 2. Then, as P2(cos8) = t(l -cos28), the bubble is an ellipsoid with principal 
diameters 2a and 2a k 6s spinning with an angular velocity w that is shown by the 
preceding formula to satisfy 

12a 
0 2  = - 

pa3 * 
(2.26) 

The spheroidal forms corresponding to n = 3,4, . . . spin at successively higher angular 
velocities and their motions realize higher stationary values of Eo for given L,. 

Steadily spiralling motions of bubbles are governed by the same basic equations 
(2.24) as spinning ones, but are harder to analyse in detail. They will be explained 
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by an approximate treatment in $ 5 ,  where interesting questions about the occurrence 
of such motions in practice will be addressed finally. 

3. Restricted theory 
A simplification of the Hamiltonian theory becomes available on the assumption 

that the surface S of the bubble can be represented non-parametrically in terms of 
an orthogonal coordinate system, for example spherical coordinates. Let a and /3 
denote two of the coordinates, to be treated in the same way as the parameters given 
this notation in $2 so that y, and J have the same definitions as before; and let 6 
denote the third. It is understood that (6, a, B) is a right-handed system. The needed 
assumption is that S can be described by an equation 

5 = % B, 4, (3.1) 

in which E is a single-valued function of a and /3. 
Given any initial state of a bubble, such a representation of S can always be found 

which will remain applicable for a finite time; however, its scope will be limited. For 
example, a translating bubble will after a comparatively short time pass beyond the 
range of spherical coordinates that may apply at first. Again, in order to make 
cylindrical polar coordinates applicable, the motions are limited to those such that 
S continues to intersect the z-axis orthogonally. In that application, a few details of 
which will be noted later, the interval for B = z is generally time-dependent, say 
[a(t) ,  b ( t ) ]  ; but this feature presents no difficulty. 

Whenever (3.1) holds, whatever the choice of orthogonal coordinate system, the 
dynamical problem is reducible to an example of Hamilton's equations in canonical 
form. This result may be deduced directly from the equations of motion coupled with 
the appropriate definition of variational derivatives ; but there is more to be learned 
by obtaining it as follows from the generalized formulation (2.7). As is standard, let 
g denote the (necessarily positive) determinant and gll the first diagonal component 
of the metric tensor for the system ( E ,  a, 8). In keeping with previous notation, the 
capitals G and G,, will denote the respective evaluations of g and gI1 at the surface 
S. Also a t  8, the direction cosines A, of the coordinate line E with respect to the 
Cartesian axes X i  are given by 

from which and from the definition of yt at the beginning of $2 it  is found that 

Note also that infinitesimal variations xg in the Cartesian coordinates of points in 
S are in view of (3.1) expressible by 

X - A  t -  I", (3.3) 

so that 
@ *  y , x t  = a". 
II 

For the same reason, 
ax, - @ as 

y,----. 
at 4, at 

(3.4) 

(3.5) 
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In the reformulation based on (3.1), the dependent variables are E(a,/3,t) and 
@(a, p, t ) .  Variational derivatives of functionals dependent on E and @ are defined 
as follows, where the crucial step is to introduce the weighted element 
dp = (d /q , )dad/3  of the domain 52 for (a,p). Let us use asterisks to denote 
functional derivatives in the sense adopted originally in $2, and take the absence of 
asterisks to refer to the present sense. The first variation of any functional f due to 
variations of @, with S held fixed, is alternatively expressed by 

f =  jD(g )*ddad /3=  jD(g)ddp; 

and since d is arbitrary it follows that 

g = %(-g)*. 
Correspondingly, for variations in S with @ fixed, we have 

whence the substitution of (3.3) for and the fact that 3 is arbitrary show that 

Note from (2.1) and from ( 6 Y / 6 X i ) *  = y, that according to (3.2) 

whatever the choice of the coordinate system (6,  01, /3). 
The reduction of (2.7) now proceeds easily in much the same way as (2.7) was shown 

to be equivalent to (2.4) and (2.5). The fourth row of (2.7) simplifies by virtue of (3.5), 
(3.6) and cancellation of a common factor d/q, > 0. Then one can use this result 
after multiplying the first three rows by A, respectively and summing by means of 
(3.2) and (3.7). The final results are 

(3.9) 

where N = ( J q , ) / @ .  In  the case that V is constant, E is here as before to be replaced 
by Eo- P Y ,  with E,, = K+ulSI. Because = Gt-GcoEt,  these equations can a t  
once be seen to express, in the coordinate system for (3.1), the kinematic and dynamic 
boundary conditions at the bubble surface S. 

(Note that N = ds/dp in (3.9) is a number that generally varies with position on 
S but everywhere satisfies N 2 1 .  In the case of spherical coordinates (r, 0, $), for 
which the particular form of (3.1) is r = R(8, ~, t ) ,  we have G,, = 1, d = R2 sine, and 
hence find N = { 1 + R-2R$ + (R sin e)-2R$}:.) 

Equations (3.9) compare with (2.8) in Benjamin & Olver (1982). The difference in 
signs is due merely to the fact that E is measured towards the liquid, whereas in the 
previous account dealing with water waves the corresponding variable, the elevation 
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of the free surface, was measured in the opposite direction. The canonical Hamiltonian 
representation of the analogous water-wave problem was noted first by Zakharov 
(1968) ; and the variational properties thus implied have also been explored by 
Benjamin (1972, Appendix; 1974, $2), Miles (1977), Milder (1977) and others. For an 
alternative view of the present representation, reference may be made to the paper 
by Lewis et al. (1985) cited in 9 1. 

Associated with the canonical representation there is an obvious Poisson bracket. 
For any two real functionals f andfwith variational derivatives as presently defined, 
the bracket is 

It follows at once from (3.9) that, iff has no explicit dependence on t ,  then 

df=  [ f , E ] .  
dt 

(3.10) 

(3.11) 

In particular, f is invariant for any solution of (3.9) if [ f, El = 0. This property can 
be used to reconfirm the simpler of the conservation laws demonstrated in 92, and 
the more complicated ones can be verified by appropriate extensions of the approach. 
As regards details of the relation between symmetries and conservative properties, 
however, the present formulation is less straightforward than the generalized one in 
$2. From (3.9) a Lagrangian least-action principle for bubble motions can also be 
derived straightforwardly (cf. Benjamin & Olver 1982, p. 168); but since it seems to 
add nothing useful, this derivation is omitted. 

3.1. Cylindrical coordinates 
Use of these coordinates presents a few special features which deserve attention, 
although of course the essentials merely exemplify the preceding theory. With 
negligible risk of confusion the symbols r ,  8 and R will be re-used in writing ( r ,  8, z )  
for the cylindrical system, and for the equation describing S 

r = R ( ~ , z ,  t ) .  (3.12) 

We have Gl1 = 1, @ = R, so dp = RdBdz, and N = (1 +R-eRi+R,Z)k The axial 
coordinate z is taken to be the same as 5,. 

As already mentioned, the domain Sa = [0,2x] x [a( t ) ,  b( t ) ]  is generally t-dependent, 
and S has to continue intersecting the z-axis orthogonally for (3.12) to remain valid 
(i.e. for R to remain a single-valued function of 8 and z). At a pole of S, say the furthest 
along the axis, it is thus essential that IR,I + co and so 1q + 00 as z+b. But since 
ds = Ndp - d(iR*) d8 as z+b, the integral over G? expressing 181 is plainly 
convergent, and likewise other relevant integrals such as that for I, given below. For 
similar reasons, moreover, the first variation of these integrals is in every case found 
not to depend explicitly on variations of a and b. So the Hamiltonian representation 
(3.9) of the dynamical problem is borne out unambiguously. 

There is only need to consider the axial components of the linear Kelvin impulse 
Iand  the impulsive couple L. Because ds = N dp and Nn = (1, R-lRe, -R,), they are 
given by 
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It follows that 

T .  B. Benjamin 

!!? = -@,, $ SI = R,, 
SR 

3 6L = -@& - sL3 = Re. 
SR S@ 

(3.13) 

(3.14) 

These expressions confirm the relation between impulse and spatial symmetries, as 
demonstrated more generally in $2. The infinitesimal generators of the axial 
translation and axial rotation symmetry groups for (3.9) are a, and a, respectively, 
and their representatives in the sense associated with the symbol V in $2 are 
respectively V = - U, and V =  - U,, where U = [R,  @IT is any solution of (3.9). Thus 
each case bears out the rule (cf. Benjamin & Olver 1982, $5;  Olver 1980, 1983) 

V = Y grad f( U), 

where f stands in turn for the invariant functionals I ,  and L,, and where 5 is the 
skew-symmetric matrix implied when the system (3.9) is expressed by 

U, = Y grad E( U). (3.15) 

The variational characterizations of steady motions are hence recovered in a 
manner superficially different but in fact equivalent to that in $2. For azisymmetl-ic 
forms of S and correspondingly &independent @ (so that L, = 0) ,  consider the 
variational principle E, = min. for given values of Y > 0 and I ,  + 0. In view of (3.9) 
and (3.13), the Euler-Lagrange equations necessarily satisfied by a conditional 
minimizer are 

cR, = -, S@ 

(3.16) 

in which c and P are Lagrange multipliers. Comparison with (3.9) shows these 
equations to be the boundary conditions for an axisymmetric bubble steadily 
translating with velocity c in the z-direction; for then R = R(z-  ct)  so that R, = -cR,, 
and similarly = -c@,. Note that upon multiplying the second equation by R@, 
integrating over SZ and appealing to Green’s theorem, one concludes that for any such 
steady motion 

cI ,  = 2K.  (3.17) 

This property is well known (cf. Kochin et al. 1964, $7.7) and is easily confirmed to  
be true for any body moving without rotation in the 2,-direction. It implies, as is 
otherwise obvious, that c has the same sign as I, .  

Steadily spinning motions are described by the variational principle E, = min. for 
given Y > 0, I ,  and Q3 + 0. In view now of (3.14) as well as (3.9) and (3.13), the 
EulepLagrange equations are 

(3.18) 
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to which the boundary conditions reduce when R = R ( z - c t ,  0 - w t )  and similarly for 
40. Thus the Lagrange multiplier w respecting the prescribed value of L, is the angular 
velocity of the spiralling motion represented by the conditional minimizer. 
Generalizing (3.17) we now have 

cI,+wL, = 2K. (3.19) 

In the case I, = 0, the minimizer of E,, for given Y and L, =I= 0 represents a motion 
where a non-axisymmetric bubble spins about the z-axis without moving along it. 

It deserves re-emphasis that these conclusions are meaningful only if 1131 and 1L31 
are not too large, so that the existence of conditional minimizers in the considered 
class of motions may be presumed. Minimax conditional extremals if they exist also 
represent steady motions, of course, but the motions so characterized are likely to 
be unstable. (For example, this is so for the infinitesimal spinning motions with n > 2 
noted at the end of $2.7.) The more serious limitation on the theory is that if 1131 is 
large enough for a given Y there is no simply connected bubble that moves steadily. 

4. Estimates for axisymmetric steady motions 
By use of the simple relation (3.17) particularized to translating axisymmetric 

bodies with non-varying shape, the theory can be simplified further and enables the 
dimensionless form of c2 (the Weber number) to be estimated by a Rayleigh-Ritz 
procedure. For such a body it is customary to define an added-mass coefficient ,u by 

K = $Yc2p, 
corresponding to which 

(Dependence on the density p of the liquid, previously taken to be unity, is here 
suitably made explicit.) A sphere is well known to have ,u = f, and for oblate bodies 
,u > f. Similarly, taking Y = gnr: to define the equivalent spherical radius re, we may 
express the superficial energy of a bubble in terms of a dimensionless coefficient A, 
thus 

A sphere has A = 1, which value is of course the absolute minimum. In the class of 
all axisymmetric surfaces 8 closing simply connected bubbles, both ,u and A depend 
only on shape, not on size. 

Since a minimizer of E,, = K+uIS( for a given Y and I3 automatically satisfies 
(3.17), it  also minimizes 

I ,  = pYcp.  

= 4nr;uA. 

12 

Any stationary value of (4.1) requires that 

= - $ Y c z f i  + 4nr; uA ; 

and in terms of the Weber number W = 2pr, c z / a  this condition is 

wfi = 12x. (4-2) 

It is essential moreover that W be positive, and thus steady translations are 
impossible for prolate forms of the bubble with ,u < 4. Specifically, (4.2) is satisfied 
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by every infinitesimal perturbation relative to an extremum; but for a prolate form 
realizing a stationary value of F, there would necessarily be perturbations towards 
spherical form such that A < 0 yet f l >  0. The fact thus spotlighted is otherwise 
evident, because a steadily translating bubble must have greater mean curvature at 
its equator than at its poles for hydrodynamic pressures on S to be balanced by the 
action of surface tension. 

Equation (4.2) shows that a minimum of E, for given V and I, is realized by the 
solution to either of the variational problems 

(A) A = min for given p > !i, 
(B) p = max for given h > 1. 

So they recover the original characterization of steady motions and present the main 
physical parameter Was Lagrange multiplier. Either (A) or (B) is a suitable setting 
for a Rayleigh-Ritz method of estimating W. 

2.1. Spheroidal approximations 
Covering the one-parameter class of oblate ellipsoids of revolution, an expression for 
p is available from Lamb (1932, $$114, 373) or Milne-Thomson (1968, $16.54). In  
terms of 7 = arc sec (b la) ,  where b/a  2 1 is the ratio of the axes, write 

U 
s = sinq, c = cosr = -, T = tan7. 

b 

Then 7-7 
p = - *  (4.3) 

An expression for the surface area of an oblate spheroid is well known, leading to 

12h=-- 12's' 
4 x r ~  - { 2b2 +: In (z)} 

= 6cS+- 3ct ln(-). l + s  
s l - s  (4.4) 

According to (4.2), the best spheroidal approximation to solutions of the problems 
(A) or (B) makes 

W=-. 12h'(7 1 
P'(7) 

Hence differentiation of (4.3) and (4.4) leads directly to 

{ 6 + 4~~ - rq) In (e)]. d(7 - SC)2 
W =  

Ss[7(3 +Ta)  -371 (4.5) 

Thus W is estimated explicitly as a function of 7, and correspondingly of b/a .  
Because the Rayleigh principle is exemplified by its variational basis, the result 

(4.5) can be expected to give a quite close approximation to W, particularly for values 
of b/a not much larger than 1. Figure 2 presents graphs of Wand p against b/a, from 
(4.5) and (4.3) respectively, also a graph of dimensionless impulse /I Wk An interesting 
feature is that W has a maximum value 3.271 at b/a = 3.722, p = 2.20, which 
estimate was previously obtained by El Sawi (1974, figure 2). A similar but less 
accurate graph of W against b/a had been found by Moore (1965, figure 1)  upon 
assuming spheroidal bubbles and satisfying the boundary conditions only at the poles 
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FIGIJRB 2. Calculated Weber number W, inertial coefficient p and dimensionless impulse pJ@ 
plotted against axis ratio b/a = sec g for oblate spheroidal bubbles. 

and equator. Approximate findings such as the present can be checked by comparison 
with results computed numerically by Miksis et a?. (1981, figure 5 ) ,  whose estimate 
is that W,,, = 3.23 at b/a = 3.85. The curve W v8. b/a obtained by their compu- 
tations is very close to that in figure 2 as far as values of b/a more than twice the 
optimum, even though for such values the computed shapes of bubbles differs 
significantly from spheroidal. Other relevant numerical results, bearing particularly 
on the dependability of our inviscid-fluid model, are available from the study by 
Ryskin & Leal (1984,542). Their computations included viscous effects on axisym- 
metric bubbles and confirmed that the shapes of bubbles depends predominantly on 
W when the Reynolds number for them is as high as 100 or 200. 

It is remarkable that the present simple estimate of the maximum reached by W 
is only 3 % greater than the critical value estimated experimentally by Hartunian 
& Sears (1957), above which value the rectilinear motion of bubbles in pure liquids 
with small viscosity becomes unstable. A reasonable conjecture is that the maximum 
of W is associated with bifurcation from the class of axisymmetric conditional 
extrema into non-axisymmetric ones (see 85.2). 

Despite a quite different formulation, the result (4.5) is in fact equivalent to the 
result given by El Sawi (1974, equation (3.12)), which he derived by 'lengthy and 
tedious computations ' based on a virial method. The agreement is hardly surprising : 
his approach, like the present one, serves to locate the best fit to the bubble problem 
in the class of spheroidal shapes. But the present derivation of (4.6) appears vastly 
simpler than El Sawi's, both conceptually and in the details of the computations. 
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5. Spiralling bubbles 
Steady helical motions of axisymmetric solid bodies in an infinite liquid are well 

understood from an analysis due to Kirchoff which was reported by Lamb (1932, 
$129; see also Ramsey 1935, 58.56). For a solid body with angular inertia about its 
axis of symmetry, an infinite range of such motions is possible corresponding to 
continuously disposable values of a parameter k with the dimension of length (Lamb, 
1932, p. 179, (2) and (3)). But for an axisymmetric bubble, which of course has no 
angular inertia about its axis of symmetry, the same analysis shows that for a 
spiralling motion the shape of the bubble must be oblate and k is limited to a single 
value. Although these and other necessary properties of spiralling bubbles can be 
deduced from the original analysis, it will be interesting to use the variational 
characterization (2.24) in order to derive a complete description including that of 
shape. 

Let us assume the bubble in steady motion to be axisymmetric, and take moving 
axes (z, y, z )  with x along the axis of symmetry. Because of the symmetry and the 
absence of angular inertia about the x-axis, the z-axis can obviously be chosen to 
intersect the fixed axis, say x,, relative to which the impulsive wrench composed of 
I I  and L, is taken to be prescribed. It will save space to assume that the axes z and 
z1 are orthogonal and that the linear and angular velocities of the bubble have no 
component in the z-direction. (Otherwise allowance can be made for a variable angle 
between these axes and for non-zero values of these components : then the extension 
of (5.4) to include the three additional variables straightforwardly confirms the 
present assumptions.) Accordingly, respective to (x, y, z ) ,  the linear velocity of the 
bubble is expressed by (u,  v, 0) and its angular velocity by (p, q, 0) ,  although of course 
the component p has no dynamical significance. Let R denote the radial distance from 
the 2,-axis to the centre of the bubble, and 6 the angle between the direction of this 
axis and that of the bubble’s axis of symmetry, as shown in figure 3. 

On the further assumption that the bubble is symmetric about the (y,z)-plane 
(which assumption can readily be justified a posteriori), the kinetic energy K of the 
fluid motion is given by 

(5.1) 

where A ,  B and Q are inertial coefficients calculable in principle for any shape with 
the supposed symmetries (cf. Lamb 1932, p. 173). Also, with reference to figure 3, 
the components of the impulsive wrench ( I I ,  L,) are seen to be in general 

2K = Au2 + Bv2 + Qq2, 

Il  = Au cosB+Bv sine, (5.2) 

L, = R(-Ausine+BvcosO)+Qqsine. (5.3) 

Appealing now to the variational principle (2.24) for steady motions, we have that 

a 
-(K-cI,-UL,) aU = 0 ,  (5.4) 

where U represents any of the parameters u, v, q, R and 8, each of which can be varied 
independently of bubble size and shape. With U as u, v and q, (5.4) shows respectively 
that 

u = c cos8-wR sine, 

v = c sinB+wR cos8, 

q = w sin 8. 

(5.5) I 
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Path of centre 

C 

FIQTJRE 3. Diagram defining angles 8, $ and 6. 

These three kinematic identities simply show that the centre of the bubble moves 
steadily along a helical path with radius R and pitch 2xc/w. The whole bubble 
translates with velocity c in the direction of the x1 axis while rotating about this axis 
with angular velocity w .  

We next have 

which implies that 
- Au sinB+Bv cost3 = 0 (5.6) 

if neither w nor R is zero. As can be expected, (5.6) merely confirms that in the steady 
motion there is no component of linear impulse other than in the x,-direction. 
Furthermore, (5 .2)  and (5.3) reduce by virtue of (5.6) to 

1, = Au see0 (5.7) 

(5.8) Qq2 and L, = Qq sine = -. 
w 

The last of the necessary conditions (5.4) for steady motion gives 

a 
ae 0 = - ( c l ,  + wL,) = c( - Au sin 0 + Bv cos 0 )  

+ w{ - R(Au cos 0 + BV sin 0)  + Qq COB O}, 

whence in view of (5.6), (5.7) and (5.8) it follows that 

I , R =   cote. (5.9) 
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From (5.9), substituting (5.7), (5.8) and wR = v cos6-u sin6 = (l-(B/A)}v ~ 0 8 6 ,  
one obtains 

from which elimination of u by further use of (5.6) leads to 

( A -  B)  uv = Qq2 cot 8, 

v2 A& _ -  
q2 - B(A-B) '  (5.10) 

This quotient is the same as k2 in the aforementioned account by Lamb (1932, $129). 
Note that (5.10) implies A > B :  that is, an axisymmetric bubble in steady spiralling 
motion must be oblate. 

Attributes of the helical path followed by the centre of the bubble are deducible 
as follows from the preceding equations. Write h = A / B ,  remembering that h > 1 by 
(5.10), and let $ denote the angle of yaw between the path and the z-axis, as shown 
in figure 3. Then (5.6) gives 

(5.11) tan$ = - = h tan6. 
V 

U 

Expressing w/u alternatively by ( 5 4 ,  we hence obtain upon rearrangement 

(5.12) 

Here f: = $- 8 is the angle between the path and the direction of the z,-axis, as also 
shown in figure 3. It can be presumed that 0 < f: < !gt (i.e. both c and w have positive 
values). So in accord with (5.11) and (5.12) we have 

c cotO+h tan8 - tan$+hcot$ - cotg = - = UR h-1 h- 1 

o < e < + <in. 
To compare f: with 8, (5.12) can be rearranged to  give the inequalities 

(h-l)(T-hTs) < tang < (h-l)(T-hTs+hSTs), 

where T = tan8. These show that when the bubble is nearly spherical, so that 
0 < (h-  1 )  6 1, and 8 is small, then f: is very close to (h- 1) 8 and so much smaller 
than 8. Note also that both expressions to the right in (5.12) have the absolute 
minimum value 2hb/(h- 1). So, irrespective of 8, we have 

l - h  
0 < tan g < 1. 

2hr 

Substitution of (5.5) into (5.10) and use of (5.12) lead to 

R = [ (h2)Q] ts inB cos8, 

whence further use of (5.12) shows the pitch of the spiral path to be given by 

-- 2xc - 2xR cot f: = 2n [ (h- 1 )  A ]t(cosPB+hsin28). 
w 

(5.13) 

(5.14) 

The extreme smallness of tan f: = wR/c  noted above in the case of small (h- 1) and 
8 is thus illuminated. For a bubble of unit equivalent spherical radius, since 
Q = O[(h- 1)2] as (h- 1)+0, we have 

c 
w 

R = O[(h-  l)i19] and - = O[(h-  l)i]. 
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Note that (5.13) and (5.14) determine the helical trajectory completely in terms of 
the bubble's three inertial coefficients and either 6 or the yaw angle $ according to 
(5.11). 

It remains to determine the shape of spiralling bubbles. We could proceed as at 
the start of $4, explicitly expressing conditional variations of K+alSl for fixed Y 
and given I ,  and L, as parameters; but the outcome can be inferred more directly 
from (2.24). Let A, B and 0 denote variations of A, B and Q corresponding to 
infinitesimal variations of the bubble surface S that leave the volume Y unchanged 
but are otherwise arbitrary. In the light of the kinematical conditions (5.5) it appears 
at  once from (5.1) and (5.2) that, for variations in this class, 

Hence, as 4 = 0 for these variations, (2.24) shows that 

;Auz + i B V 2  + g q 2  = alSI. (5.15) 

A complete characterization of bubble shapes is provided in that (5.15) must be 
satisfied for arbitrary variations in the considered class, and approximations may be 
found by a Rayleigh-Ritz procedure based on this variational principle. 

From (5.15), expressing q2 as a multiple of v 2  by use of (5.10) and v8 as a multiple 
of u2 by use of (5.6), one obtains 

= 2481. (5.16) 

Next u2 can be expressed as a multiple of c2, where c is the velocity of the bubble 
in the 2,-direction, so being given by 

c = u cost?+v sin6 = u cos6+- { C O S ~  

Hence, upon the introduction of dimensionless inertial coefficients p, v and 5 defined 
for given V = txlr.", by 

A = p V p ,  B = p Y v ,  Q = pYrZ5,  

together with the surface-area coefficient A and the Weber number W a s  defined in 
$4 and now based on c, the result is 

( cos2 W 6 + cos2 h sin2 6 6)s [/i+(,uh tan26){:+(y)!}] = 12x. (5.17) 

As it evidently must, this result recovers (4.2) when 6 = 0; and 8 > 0 can be treated 
as a parameter of possible spiralling motions. With 8 and W given, the bubble shape 
can in principle be determined fully by solving (5.17), whereupon properties of the 
respective helical trajectory can be found from (5.13) and (5.14). 

5.1. Spheroidal approximations 
The class of oblate ellipsoids.of revolution is now reconsidered in order to obtain 
estimates for spiralling bubbles. To extend the idea used in $4.1 and find the best 
spheroidal approximation to solutions of (5.17), the arbitrary variations /i, 3, and 
A are particularized to derivatives with respect to the single parameter 7 E [0, $1 
covering this class of shapes. Expressions for p and for A have already been given 
as (4.3) and (4.4), while expressions for v and E can be obtained from formulae given 
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in Lamb (1932, $5114, 373), Milne-Thomson (1968, $517.53, 17.54) or Kochin et al. 
(1964, 57.8). In terms of the notation introduced before (4.3), the required results 
are 7-sc 

V =  
7 + 527- 7 ' 

s4(p - v) 
= 5 c ~ { s 2 ( 1 + 2 p + p v ) - 2 ( p - v ) } '  

(5.18) 

(5.19) 

It will be informative to consider first the case where the eccentricity s of the elliptic 
cross-section is small, but where no restriction is placed on 8. From (4.3), (4.4), (5.18) 
and (5.19) one finds that, as s2+0, 

p = 3 1 + y ) + o ( s 4 )  

A = 1 + k s 4 + 0 ( ~ 6 ) ,  

6 = i5s4 + o(s6). 

v = 2 y1-a 10s 2 )+0(s4),  

(Note that, to first order in s2, one also has s2 = q2 = 28, where 6 = @/a)-  1;  and 
h- 1 = &s2.) Hence, to first order with terms O(s4) neglected, (5.17) leads directly to 

32s2 
9( 1 + i sin2 8) 

W =  (5.20) 

With 8 = 0, so referring to rectilinear motion of nearly spherical bubbles, this result 
recovers a formula that has long been known (Moore 1959, (3.5)); and it accounts 
for the initial slope of the curve in figure 2. As a notable comparison between 
rectilinear and spiralling motions executed by the same nearly spherical bubble, W 
and so c2 are shown by (5.20) to be reduced with increasing 8, down to a minimum 
of 40%. 

Similarly, to first order in powers of s, equations (5.12), (5.13) and (5.14) lead 

(5.21) 
respectively to 

9 [= -  lo s2 sin 28, 

and 

R d3 - = -s3 sin 28, 
re 10 

(5.22) 

(5.23) 

which bear out the remarks below (5.14). Recalling the definition of W and 
eliminating c between (5.20) and (5.23), we find that 

12a 
pr:( 1 + t sin2 8) ' 

u2 = (5.24) 

This result is interesting in comparison with (2.26), to which it reduces as 8+0. The 
equivalence of the two results when O2 is small enough to be negligible can be 
explained by recognizing from (5.21) and (5.22) that g and R / r ,  are then negligible 
in a linearized approximation to the motion. Accordingly, the moving surface of the 
bubble is representable in this approximation by a combination of spherical surface 
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FIGURE 4. Curves W us. a/b  in interval [0.5,1], with parameter sineO in interval [0,1]. Loci 
I= const. and E = const. are also shown, starting from the same point on curve C, for which 
e = 0. 

harmonics of second order.? Thus Lamb’s general formula (2.25) is again applicable 
with n = 2. When e2 is not negligible, w2 and W, so c2, are reduced by the same fraction 
from their values as 6+0. 

Graphs of W vs. a/b for various values of sin 0 between 0 and 1 are presented in 
figures 4 and 5. They were computed from (5.17) and the expressions (4.3), (4.4), 
(5.18) and (5.19) fQr,u, A, v and 5. An interesting feature prominent in figure 4 is that 
whereas each curve for 0 < sine < 1 begins on the right by going below the curve 
for 8 = 0, say C,, it eventually crosses and goes above C,,. The behaviour for small 
l - ( ~ / b ) ~  = s2 is already demonstrated by (5.20), but that for larger l - ( c ~ / b ) ~  is 
somewhat surprising. Note from figure 4 that the curves below C, have an envelope, 
points on which repreaent the minimum possible W for the respective a/b  (i.e. 
minimum velocity c for spheroidal bubbles of given volume and shape). The abscissa 
of the point at  which the envelope touches C, is seen from (5.17) to be a root of 

(5.25) 

t Specifically, changing notation for the moment in order to let (r,O,~) denote spherical 
coordinates with origin moving with velocity c along the x,-axis, and writing E for the small angle 
denoted by 8 above, we find that the spheroidal surface S is described by r,(l +f) with 

f = -pit + cos28 + 2~ sin 28 cos ($ - wt)}. 

The t-independent component, proportional to P,(cos 0) ,  is maintained by the motion in the 
2,-direction ; and the rotating component, proportional to Pi(cos 0) ,  is dynamically independent 
of the other in the present approximation. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

a/b  

FIGURE 5. Curves W vs. a/b  with parameter sin2@, whose values are successively halved (thus 
sin2@ = 0.1/2O for the curve ending furthest to the left). Two loci I= const. and = const. are 
also shown, starting from points a / b  = 0.08 and 0.25 on curve C,,. 

becausef is proportional to [dW/d82]o=, for fixed alb.  Equation (5.25) is found to 
have only one real root, which is estimated to be alb = 0.6234. 

Figure 5 shows that, where a / b  is less than this value, the curves depart greatly 
from C, unless sin8 is quite small. Those for 0 < sin2 8 < 0.1/2s, however, are shown 
to have maxima and then minima to the left of the maximum of C, a t  
alb = 113.722 = 0.2687. 

Figures 4 and 5 also include several pairs of loci = const. and e; = const., each 
pair being started at the same point on C,. The parameters rand represent impulse 
and total energy non-dimensionally , being given by 

+ 6h. 
,u W{ 1 + 2(h - 1) sinz 8)  
2{ 1 + 2(h - 1) sin2 8}2 

jJ:=-- Eo - 
(@rE a) 

In order to interpret these loci, note first that with decreasing alb along the curve 
C, as far as it is drawn, r steadily increases (as the graph of p Wi vs. bla in figure 2 
shows), and so too does E.  Each point on C, represents, in the class of spheroidal 
bubbles with the same volume, a minimum of E, for given I ,  > 0 and L, = 0. A locus 
7 = const. started on C, represents in this class those spiralling motions that realize 
the same impulse as the purely translational motion represented by the starting point 
on C,, and the impulsive couple L, in fact steadily increases with distance from C, 
along the locus. It is particularly significant that every curve r= const. in figures 
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4 and 5 is to the left of the curve # = const. started at  the same point on C,. Thus 
each locus I= const. started anywhere along C, must intersect loci E = const. 
starting further to the left along C,;  and in fact 8 increases steadily with distance 
from C, along each rlocus. This property means that, for a given -tr and I, but without 
restriction on L,, a translational motion always realizes the absolute minimum of 
energy. In other words, the acquisition of impulsive couple always entails a rise in 
energy. The possibility of a bifurcation into and exchange of stability with the class 
of spiralling motions is therefore excluded, although it might have been expected to 
accompany the maximum of C, or even the curious reversal of properties at  
a /b  = 0.6234. 

Although for values of a/b as small as 0.3 the spheroidal approximations lose 
accuracy in describing the shape of moving bubbles, their success in predicting gross 
dynamical properties has been noted in $4.1. It seems unlikely that the preceding 
conclusion would be contradicted by higher approximations. 

5.2. Stability 
By experimental observations on bubbles rising in liquids of small viscosity, Saffman 
(1956) and Hartunian & Sears (1957) established that steady rectilinear motions 
become unstable when the velocity of rise exceeds a critical value which depends on 
the bubble size and physical constants of the liquid. The empirical rule found by 
Hartunian & Sears has already been noted, namely that there is a critical Weber 
number W, = 3.18 provided the Reynolds number 2cr,/v is greater than about 200. 
When W > W, a bubble moves in either a zigzag or helical path, the straight path 
followed when W < W, having lost stability. Despite bold attempts at approximate 
stability analyses by Saffman and by Hartunian & Sears, their theoretical results were 
largely uncertain, and the main questions of the subject seem to remain unanswered 
decisively. It is possible that these questions could be settled in large part by a 
complete analysis based on the Hamiltonian formulation (2.7) or (3.9), and various 
general properties of continuous Hamiltonian systems might be useful in this 
connection. But the exact stability problem is evidently not easy, and it will not be 
tackled here. To conclude the discussion of steady spiralling motions, however, the 
following remarks about them are worth mention in relation to questions of stability. 

In comparison with rectilinear motions of bubbles, spiralling motions have the 
crucial distinction that the impulsive couple L, is non-zero. As noted in 82.4, 
moreover, L, is an invariant of any overall motion in the absence of externally applied 
forces. Therefore a spiralling motion cannot be evolved from a state of motion with 
L, = 0 unless either an external couple acts, such as may arise from pressures on an 
asymmetric solid boundary fixed nearby, or a complementary motion with impulsive 
couple - L, is also evolved somehow and is left behind the spiralling bubble. This 
basic consideration shows that the emergence of spiralling motions as the outcome 
of instability must be a very complicated process, being inaccessible to linearized 
stability theories or other descriptions of that sort. The negative conclusion recorded 
at the end of $5.1, that spiralling motions are never accountable as I,-conserving 
bifurcations from the class of rectilinear motions, is consistent with this appraisal. 

Marginally beyond the limit of stability for a straight path, bubbles were observed 
by Hartunian & Sears (1957) to move most often along helical paths. Saffman (1956) 
observed zigzag paths to be more usual just beyond the stability limit, and he 
suggested that the spiralling motion arises from a later instability. Other observations 
by him appear to identify the true explanation for what happens, to be summarized 
below. In  particular, the zigzag motion was sometimes observed to occur first and 
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then change into the spiralling motion, but never the reverse. Again (Saffman 1956, 
p. 253) it was found that “a  bubble could usually be made to spiral by ‘hitting’ it, 
i.e. by placing an obstacle.. .in the path of the bubble.” This observation appears 
particularly significant in the light of the requirement L, $I. 0 noted in the preceding 
paragraph. 

It is conjectured that in the neighbourhood of the maximum of W, as calculated 
accurately by Miksis et al. (1981) and reproduced approximately by the curve C, in 
figures 2 or 5 ,  there is a bifurcation into asymmetric shapes of steadily translating 
bubbles corresponding to given Y and given I, above a critical value, but with 
L, = 0. These asymmetric bubbles presumably realize a minimum of E, smaller than 
the value of E, for the axisymmetric bubble with the same 9‘- and I,, the latter value 
having become minimax and so carrying no implication of stability. Exemplifying 
a common attribute of symmetry-breaking bifurcations near turning points, the 
branch of asymmetric steady solutions is itself likely t o  be the centre for time-periodic 
limit cycles; and such solutions would account for the zigzag motions observed in 
practice. 

No indication of these possibilities is afforded by an approximate analysis on the 
present lines using only the one-parameter class of oblate spheroidal shapes. But this 
outcome must be expected since the asymmetric bubbles in question need at  least 
a two-parameter description, because evidently they have to be different in three 
orthogonal directions. Calculations by computer generalizing those due to Miksis 
et al. (1981) seem to offer the best prospect for illuminating the present conjectures. 

As regards the generation of spiralling motions when I, is made large enough, the 
following explanation is plausible. Two eventualities have to be appreciated. First, 
a non-zero impulsive couple (IL,I $I. 0) may be acquired simultaneously from the 
initial, typically non-axisymmetric process of formation imparting I ,  > 0, as when 
a small bubble is squeezed out of a nozzle and its velocity of rise increases until soon 
the buoyancy force is balanced by drag. This eventuality seems to have prevailed 
in the experiments by Hartunian & Sears (1957). 

Second, a zigzag motion may arise initially which, if I, becomes too large, will 
amplify to beyond reach of stable limit cycles. Then a disruptive process ensues, 
which ends with some fraction of linear impulse and fraction of energy being shed 
in a concentrated motion that is left behind and carries an impulsive couple - L, 
relative to the original axis, while the bubble proceeds in a spiral path characterized 
by the remainder of I, and an impulsive couple L, > 0. Thus, in effect, the bubble 
is transmuted from an unstable state near the maximum of C, in figure 5 into a stable 
spiralling orbit represented somewhere to the right and a little lower in the figure, 
this transformation necessarily causing some of the original energy to be left behind. 
One possibility for such a process is that a smaller bubble is broken off, finally moving 
along or spirally about a straight line that does not intersect the axis of the main 
spiral. A more likely possibility is that a vortex ring is shed, finally moving along 
such a line. 

6. Multiply connected bubbles 
All the preceding theory depends on the assumption that d is a simply connected 

region, and the limitations so implied have been acknowledged at the end of $2 and 
the end of $3. Here a means of freeing the theory from these limitations is 
summarized. Note first, incidentally, that the Hamiltonian formulation explained in 
$2 admits immediate extension to the case of several separate bubbles, each of which 
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is simply connected. The array of bubbles can be represented parametrically by 
taking (a,p) to range over respective disjoint regions of R2, and otherwise the 
formulation proceeds as before. In particular, the only modification of the conser- 
vation laws is that the bubbles contribute severally to integral properties such as E 
and I. 

Now, the theoretical and experimental study by Benjamin & Ellis (1966) demon- 
strated that a bubble at first simply connected will evolve into toroidal form when 
the impulse I of its motion, an invariant vector, has a magnitude sufficiently large 
in relation to the bubble’s volume V .  (More specifically, for the state where W is 
maximum as discussed above, we have I3 = 3.57p4dY0; so values much larger than 
this one are in question.) The archetypal case is that of an empty bubble starting 
approximately spherical but then collapsing under a constant pressure P, > 0 at 
infinity in the liquid, which case is covered by the present model with P = - P, and 
thus E = K +  alSl+ P, V .  If I =+ 0 initially, the bubble has to become toroidal as the 
only way of sustaining I as V + O .  The process whereby a jet of liquid penetrates 
the bubble in the direction of I is not wholly energy-conserving, however, and thus 
the description by Hamiltonian theory is interrupted. A revised Hamiltonian model 
may nevertheless apply reasonably well to the later motion, which may be supposed 
irrotational but with circulation around irreducible circuits in the liquid. 

A suitable extension of the preceding theory can be derived from material in 
Lamb’s book (1932,9547-55,132,133,139). The account there deals with rigid bodies 
moving in an infinite liquid, but relevant details are easily enough adaptable to the 
case of deformable interior boundaries S. It will suffice for illustration to consider 
a single toroidal bubble: thus d ( t )  bounded by S(t)  is such that the order of 
connectivity of D(t) = R3\4(t) is just two. A single cyclic constant K must then be 
specified in determining the velocity potential 4. Following Lamb (1932, $132) one 
writes 

where both 4’ and x are harmonic functions in D(t) vanishing together with their 
gradients as r+ 00 and satisfying conditions as follows. First, 4‘ is single-valued in 
D. Second, x is a cyclic function satisfying ax/an = 0 on S and differing by unity on 
the two sides of a fictitious surface (‘barrier ’) B such that D\B is simply connected. 
As before, one of the Hamiltonian variables is taken to be @ = q5s. At each t ,  with 
S specified by the other dependent variable (i.e. X(a, 8, t )  according to $2, R(a, /3, t )  
according to $3), @ in fact determines both 4‘ and x when x is subject to the stated 
conditions with a chosen value of the invariant parameter K .  This strategy can be 
generalized in the standard way when the order of connectivity of D is any integer 
m 2 2; then m-1 cyclic constants are disposable (Lamb 1932, $$49, 50). 

By appeal to Kelvin’s extension of Green’s theorem (Lamb 1932, 553) it is found 
that, for fixed K ,  the first variation of K has no contribution from B, so taking 
precisely the same form as derived in $2 or $3. Thus the Hamiltonian representation 
of the modified dynamical problem is the same as the original, and the same 
correspondence holds between symmetries and conservation laws. The only difference 
is the implicit but crucial one, namely that @ continually depends on the decompo- 
sition (6.1) of q5. 

Hence variational principles for steady motions in the present class can at once 
be recognized. In particular, there is a characterization of uniformly translating 
toroidal bubbles with circulation, which are in effect hollow vortex rings. For a given 
K ,  delimiting q5 to accord with (6.1) and the conditions on x ,  one considers the 
axisymmetric toroidal form of S and the axisymmetric @ that minimize E, for given 

4 = d ’ + K X ,  (6- 1) 
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V and given axial impulse I, with the same sign as K. The important new feature 
is that I, has a component proportional to K (cf. Lamb 1932, $133, (6)) whereby 
arbitrary positive values of I,/K can be attained, however small the value of Y .  
Specifically, this component of I, is expressible as a surface integral over B, whose 
span perpendicular to the axis x, can be made arbitrarily wide by adjusting the 
toroidal surface 8. The variational principle compares with a known one for vortex 
rings, which is posed in terms of the Stokes stream function and for which K is 
identified with the cross-sectional integral of azimuthal vorticity divided by cylin- 
drical radius (Benjamin 1976). 

Motions in which an asymmetric toroidal bubble spins steadily as well as 
translating are also describable by a variational principle. The constraint that L, has 
a given non-zero value is added to those of the preceding principle. 

7. Concluding remarks 
A moderately full examination of Hamiltonian theory for bubbles has been 

presented, with emphasis on the relation between symmetries and conservation laws 
and on group-invariant solutions which represent steady motions. The more general, 
parametric theory developed in $2 is in several respects more satisfactory than the 
alternative in $3, notwithstanding the greater formal complication of the former. But 
both approaches expose points of special interest and both warrant further attention, 
as also does the connection between them. 

The variational characterizations of steady rectilinear, spinning and spiralling 
motions appear to be new, and they offer considerable scope for further calculations. 
Particular interest attaches also to the likelihood of bifurcation near the maximum 
of the Weber number W for axisymmetric steady motions, and to the questions about 
stability touched upon in 85.2. 

I am indebted to Professor D. W. Moore who, at a seminar in Oxford four years 
ago, aroused my interest in the topic of this paper. Some time after he kindly gave 
me a copy of some unpublished notes of his on the problem of spiralling bubbles. Many 
of the analytical results recorded in $5 had been found by him using different means. 
I am grateful also to Mr Richard Fearn for undertaking the numerical computations 
that provided figures 2, 4 and 5. 
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